Encoding Commonsense Lexical Knowledge into WordNet

Emanuele Pianta joint work with Gianluca Lebani

Fondazione Bruno Kessler – HLT Group University of Trento – Center for Mind/Brain Sciences

Overview

- Concept Feature Descriptions (FDs)
 - What are they, and how are they used in cognitive science and language rehabilitation
- Can we use the WN conceptual model to encode FDs?
- Is there a closed set of relations allowing WN to represent the common sense lexical knowledge contained in FDs?
- Can all content of FD be represented in WN?

Concept Feature Descriptions (FDs)

- Human generated concept-description pairs:
 - <dog> has 4 legs | barks | is not so big
- Are considered by cognitive scientists as a window into human semantic memory (Cree et al., 2003)
- A long-lasting tradition of feature norms collection in cognitive psychology (since Rosch & Mervis, 1975; Mc Rae et al. 2005)
 - Subjects are presented with a set of concept names and asked to produce the features they think are important for each concepts
- Exploited in the treatment of anomic patients (cfr. Nickels, 2002)

In speech therapy practice, it is common to test nounrelated knowledge in terms of associations between target word and Feature Descriptions

Category		v/n	Target	Feature	Resp
TOOL	funz	n	n penna	si usa per girare la frittata	
TOOL	morf	V	chiodo	è appuntito	
FOOD	col	v	mela	è lucida e spesso rossa	
ANIMAL	morf	v	cane	ha grandi mammelle sul ventre	
ANIMAL	dim	v	scoiattolo	è un animale piccolo	
BIRD	dim	v	rondine	è un uccello piccolo	
ANIMAL	morf	v	cammello	ha piedi e mani muniti di dita	
FOOD	enc	n	caramella	è amara	
ANIMAL	col	V	rinoceronte	ha la pelle grigia	

Work by the speech therapist

- Typically, in preparing a task the therapist
 - exploits his/her semantic knowledge for finding stimuli
 - has to (manually) check on available resources
- E.g.: preparation of a semantic questionnaire
 - frequencies are checked in a frequency lexicon
 - <Concept> FD pairs are compiled by hand

```
<nail> has a pointed end
<apple> is red
<squirrel> is a small animal
```

Can a computational tool help the therapists?

STaRS.sys

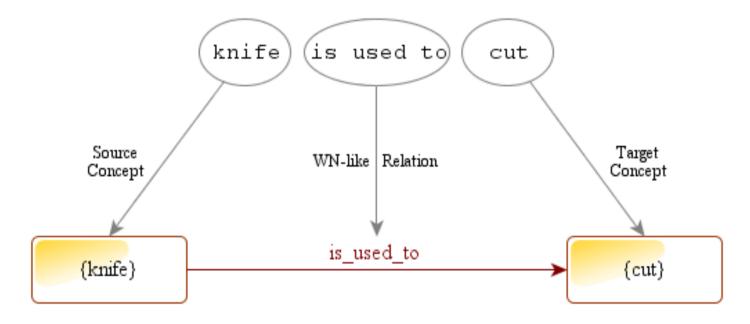
- Semantic Task Rehabilitation Support System (FBK UniTn)
 - helper for a therapist preparing a semantic task
- Retrieving concepts from specifications
 - E.g.: highly frequent animal concepts with highly distinctive colour features and a high mean feature distinctiveness
 - output: "zebra", "polar bear", "tiger", "leopard", ...
 - Related task: feature generation
- Retrieving information associated to a concept
 - E.g.: perceptual features of concept "banana"
 - E.g.: functional features of concept "table"
 - Related task: semantic questionnaire
- Comparing concepts
 - E.g.: animals living in a similar/different habitat than "lion"
 - output: "leopard", "cheetah" ... vs. "seal", "gorilla" ...
 - Related task: odd-one- out

Can WordNet be used as a backbone for STaRS.sys?

Pros

- Based on psycholinguistic assumptions
- Easy to understand and use by therapists (wrt logics oriented formalisms)
- Implements a full isa-hierarchy

Issues


- A. How can Feature Descriptions (FDs) be encoded in WN?
- B. Does available WN relations cover what is needed to encode common-sense lexical knowledge?
- C. Can all the content of Feature Descriptions be encoded in the WN conceptual model?

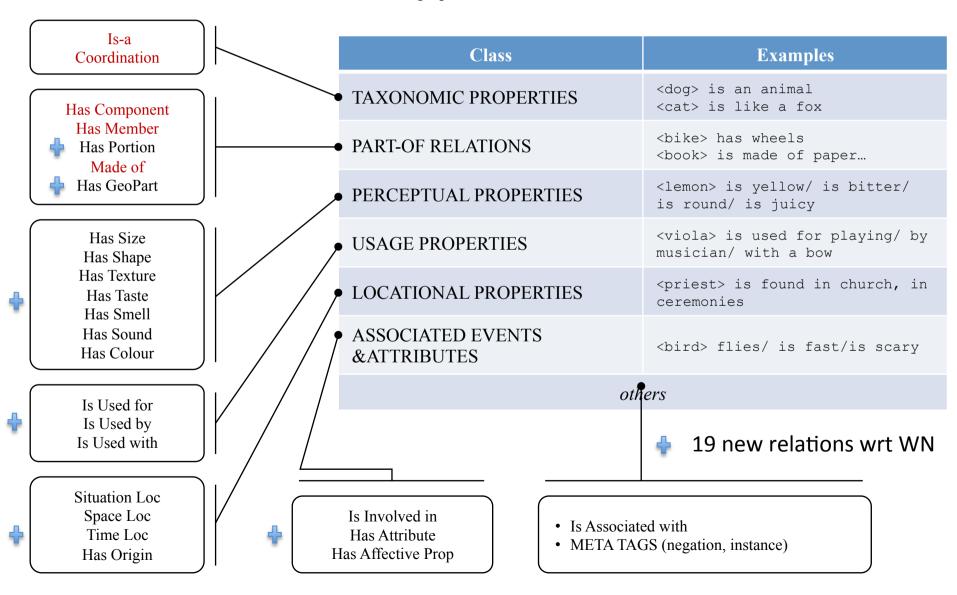
A. How to encode FDs into WN - 1

- A simple approach: append FDs to synset glosses (see usage examples)
 - PRO: easy to implement
 - PRO: can be useful for some WN applications
 - CONS: most usages of STaRS.sys (e.g. calculating concept similarity, retrieving concepts) require a more explicit representation of the semantic information contained in FDs

A. How to encode FDs into WN - 2

Representing a FD as a WN-like relation between a Source concept and a Target concept

BUT: what relations do we need to cover all Feature Descriptions?


What WN relations are needed?

- A Feature Description classification is useful per se:
 - for selecting feature types of interest
 - for implementing most of the feature-based semantic measures available in the literature
- Further Advantage:
 - A complete FD classification will help us determine the range of semantic relations needed for encoding FDs
- Requirements of the classification:
 - Cognitive Plausibility
 - Intuitiveness
 - Robustness

Towards an exhaustive list of Feature Types / Relations

- Focus on first-order entities
 - i.e. concrete and physical entities "(publicly) perceivable by the senses and located at any point in time, in a three-dimensional space" [Lyons (1977)]
- We started from relevant proposals :
 - used in a therapeutic context [e.g. CERIN, Laiacona et al (1993), Boyle
 & Coelho (1995)]
 - originated in cognitive psychology studies [e.g. Wu & Barsalou (2009), Cree & McRae (2003)]
 - motivated by well specified theoretical (ontological) explanations [e.g. Winston et al (1987)]
 - implemented in an extensive semantic resource [e.g. Fellbaum (1998), Lenci et al (2000)]
- NB: As a matter fact, it turns out that we can establish a one-to-one mapping between Feature-types and WN relations

A proposal for the classification of Feature Types / Relations

Evaluation of the classification

- A first version of the classification has been evaluated through inter-subject agreement (Lebani & Pianta, 2010)
- 5 non-expert Italian speakers (University students)
- asked to annotate 300 concept-feature pairs from a non-normalized version of the collection by Kremer et al (2008)
- Inter-subject agreement: Fleiss' Multi- π = 0.73
- We take the resulting agreement as a measure of both reliability (i.e. reproducibility) and usability/learnability
- A slightly modified version of the classification has been evaluated with therapist, producing comparable (or better) results.

C. Can all a FD content be encoded as a triple {synset} relation {synset}?

 To answer this question we run an experiment in two steps:

- 1. A new collection of FDs related to 50 concepts
- 2. Systematical encoding of all the FDs of 5 concepts

Step 1. A new collection of FDs - why

- Why not using existing Feature norms?
 - lack of coverage for certain types of feature
 - due to the organization of the semantic memory
 - due also to the methodology exploited for eliciting descriptions?
 - due also to the normalization procedure?
- as opposed to our need to cover the largest and most varied set of semantic aspects as possible

Step1. A new collection of FDs - how

- participants: 60 Italian speakers (students researchers)
- same concepts as Kremer & Baroni (2011):
 - 50 concepts from 10 categories: bird, body part, building, clothing, fruit, furniture, implement, mammal, vegetable, vehicle
- task: to describe 10 concepts by answering to a list of questions based on the semantics of our relations
 - E.g.: What is the color of Cherries; what kind of cherries are there, etc.
- every concept has been described by 12 subjects with the help of an on-line questionnaire

FDs collected (vs. Kremer norms)

- Raw Descriptions: <u>18,884</u> (vs. 8,250 in Kremer norms)
 - 377.68 descriptions per concept (vs. 170.4)
 - every subject produced in the average <u>31.47</u>
 descriptions per concept (vs. 4.96)
- Preprocessing:
 - 1,023 (5.4%) descriptions were deleted (technical, wrong or autobiographical infos)
 - 2,247 (11.9%) description were assigned to different types

Step 2: Encoding new FDs into MWN

- criteria:
 - Some amount of interpretation cannot be avoided, but reduce as much as possible the need for it
 - Whenever possible, do not simplify / reduce the content of FDs
- outcome: StarsMultiWordNet a dedicated version of the Italian MultiWordNet
- preliminary results with 5 concepts
 - seagull, finger, chair, corn, airplane
 - 1,785 raw descriptions

Issues in the encoding phase

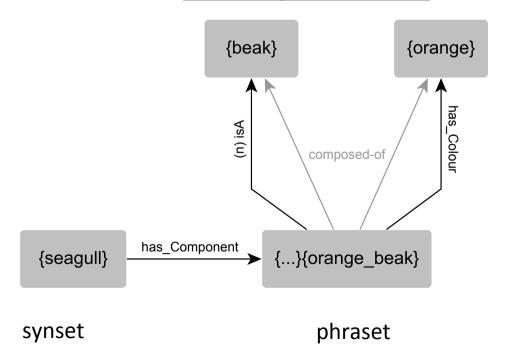
- Feature Description Normalization
- Ambiguity
- Loose talk
- Complex concepts
- Negation
- Cardinality
- Certainty

Feature Description Normalization

- All Feature Description collections undergo a normalization phase in which equivalent FDs are merged:
 - String-wise identical
 - Syntactic variant
 - Semantically equivalent (synonym expressions)
- However in most cases the notion of semantic equivalence is not well def.
- In our case you used WordNet synsets as synonymy criterion
 - <wheel> is a component of a car
 - <wheel> is an auto part
 - equivalent because they can be both mapped into a meronymic relation linking {wheel} and {car, auto}
- 1,785 raw equal or variant descriptions reduced to 871 relation instances
- 59 semantically equivalent descriptions have been merged into 29 relation instances

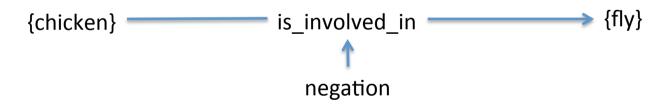
Ambiguity

- Lemmas contained in FDs (representing target concepts) can be ambiguous (can be assigned to more than one synset)
- In our sample, an av. of 3.2 synsets per lemma
- A procedure has been designed that allows the encoder to decide whether to create a relation with only one of the synsets or all of them
 - <cherry> grows in {gardens}/{grounds}
 - <corn> can be found in a {basement, cellar}/{root_cellar, cellar}
- 64 descriptions (7.3% of the sample) have been encoded with more than one relation


Loose talk

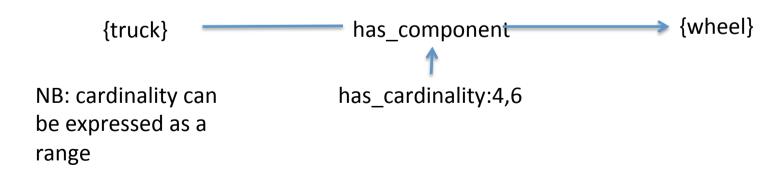
- Subjects may ignore some terms or may simply not remember them when they produce the FD. As a consequence, certain free descriptions contained in FDs could be rephrased by using a specific lexical unit:
- E.g.: is used by people who cook.
- WN glosses can be used as a basis for mapping the free phrase into a synset
 - {cook} defined in the gloss as "someone who cooks food"

Complex concepts


- In some other cases however a concept is expressed in the FD by a free description that has no lexical correspondent,
- e.g. < seagull> has an orange beak

Phraset: a set of synonym free expressions (as opposed to lexical units). Can be used to represent the content of a lexical gap, or an alternative way of expressing a lexical unit (Bentivogli e Pianta, 2004)

Negation


- McRae handles negative FDs as a specific Feature type (<bike> doesn't have an engine and <chicken> cannot fly go in the same class!)
- We follow the EWN way, by introducing in MWN relation features (also labels)

• As expected, features negated by subjects can be seen as blocking "expected" undesired implications.

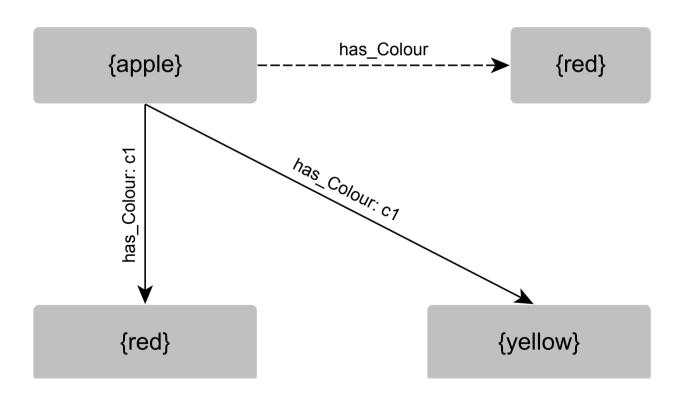
Cardinality

- Many solutions have been proposed, but none of them is useful for our purposes.
- As an example, in Vinson and Vigliocco (2008), descriptions such as has 4 wheels are split into the two indipendent concepts 4 and wheels.
- Again, relation labels are the solution

Certainty

- In standard FD normalization modifiers such as "generally", "most of the times", "sometimes" are ignored.
- We propose a new relation label, called Certainty, representing the intuition of the language speaker about how strong is his/her expectation that a certain relation holds between the instances of two concepts

Certainty cont.


- True by definition: the speaker thinks that the relation between two
 concept instances holds because of how the concepts are
 conventionally defined; no exceptions are admitted:
 - E.g.: <cat> is a feline.
- Certain: the speaker expects the relation to hold unless an anomaly occurs, which needs a causal explanation:
 - E.g: <man> has arms.
- Probable: the speaker expects the relation to hold most of the times; however if this does not occur it is not perceived as an anomaly.
 - E.g. <wardrobe> is typically made of wood.
- *Possible*: the speaker expects the relation to occur sometimes, but not most of the times.
 - <wardrobe> can be made of plastic.

Conjunction and disjunction

- Given two relation instances of the same type what is the logical relation between them?
- We need to define a default for each relation type
- E.g. by default
 - part_of relations are in conjunction (a tree has roots <u>and</u> branches)
 - has _color relations are in disjunction (apples are <u>either</u> red or yellow)
- However, in a few cases we need to overcome the default
 - some apples are red <u>and</u> yellow

Conjunction and disjunction cont.

Specific logical relations (over-writing default relations) are represented through relation labels (à la EWN)

Some results

- The semantics of 795 normalized FDs (91.3% of the total) could indeed be fully encoded as a semantic relation between two simple synsets.
- In 137 cases (15.7%) a synset for the focal concept of the description was missing.
- The encoding of 71 FDs required the creation of one or more phrasets.
- In 32 cases a part of the information expressed by the FD has been discarded.
- Only 5 raw descriptions were discarded because an efficient way to encode them was not found
 - e.g. "partially black", "is high as half a person"

Conclusions

- An extended version of WordNet including a larger set of relations (+19), and a richer data structure (phrasets, relation labels) can be used to represent the vast majority of the information contained in Feature Descriptions.
- Only a small percentage of FDs cannot be represented through the extended WN conceptual model.

Thank you!

Concepts in Cognitive Sciences

- an abstraction?
- a definition?
- a logic formula combining semantic primitives?
- a set of postulates (logical implications)?
- a prototype?
- a mental image?
- a bunch or relations with other concepts?
- a list of features?

Concepts in Computer Science

- KR Frame: an isa relation + slots and facets (e.g. KL-ONE)
- Synset: A set or synonyms + relations with other concepts (WordNet)
- FrameNet Frame: an event and its typical participants
- Ontological Concept: a formally defined structure allowing for logical inference
- Vector Space Models: a set of word cooccurrences