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Word space models in the lab
Koptjevskaja-Tamm & Sahlgren, 2012

General (BNC) News (Reuters) Blogg (Spinn3r)

hot

boiling warm casto�

distilled inclement bomsight

brackish wintry warm

drinking changeable scald

cold mild bottled

cold

hot inclement cream

franco-prussian mild cube

boer warm rink

iran-iraq wintry �oe

napoleonic changeable skating
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Example 1

recommend

recomend 0.972

reccomend 0.968

reccommend 0.941

looove 0.870

loooove 0.863

lurve 0.850

love 0.846

loooooove 0.836



Example 2

good bad

great 0.91 weird 0.86

prefect 0.83 sucky 0.86

perfect 0.83 scary 0.86

pristine 0.81 cool 0.85

stable 0.80 nasty 0.84

grat 0.80 dumb 0.84

fantastic 0.80 sad 0.84

�awless 0.79 lame 0.84

mint 0.79 creepy 0.84

immaculate 0.79 stupid 0.84
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Random projection: A′m,k = Am,nRn,k

where k � n

Simple statistics (e.g. column variance)
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Random Indexing

A standard co-occurrence matrix uses one unique dimension per

context

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
w1

w2

w3

...

wm


0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 0





Random Indexing

Random Indexing uses several non-unique dimensions per context

r1 r2 r3 r4 r5
w1

w2

w3

...

wm
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...

...
...

...
...
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c1 = [r1, r3]
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Random Indexing

Random Indexing uses several non-unique dimensions per context

r1 r2 r3 r4 r5
w1

w2

w3

...

wm


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


c1 = [r1, r3] c2 = [r1, r4] c2 = [r2, r4]
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Word Order

A context vector is a sum of (random) index vectors

Word order does not matter when summing vectors:

�the baby fed the bear�

c(fed) = r(the) + r(baby) + r(the) + r(bear)

�the bear ate the baby�

c(ate) = r(the) + r(bear) + r(the) + r(baby)
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One solution: circular convolution (HRR, BEAGLE)

Context vectors are accumulated from n-grams (up to 7)

The n-grams are bound by circular convolution (∗) and an

auxiliary random vector (Φ)

c(fed) = (r(baby) ∗ Φ) + (r(the) ∗ r(baby) ∗ Φ) + ...
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Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Direction vectors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) one step if a word occurs to the left

or right of the focus word (cf. HAL)

c(fed) = Π−1r(the) + Π−1 r(baby) + Π r(the) + Π r(bear)
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Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.
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Context window size

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

10+109+98+87+76+65+54+43+32+21+1

%
 c

or
re

ct

Context window

Order vectors
Direction vectors
Context vectors

Combined vectors (Context + Direction)
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Random permutations



Results
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initializations of the random vectors.

BEAGLE score: 57.81%
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(Roget's thesaurus: 78.75%, WordNet < 25%

Jarmasz & Szpakowicz, 2003)
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random index vectors.
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Examples

KING

Word before Word after

luther .24 queen .43

martin .22 england .25

become .17 midas .16

french .14 france .15

dr .13 jr .14



Examples

PRESIDENT

Word before Word after

vice .69 roosevelt .22

become .23 johnson .20

elect .20 nixon .18

goodway .09 kennedy .15

former .09 lincoln .15
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