
Distributional Semantics

Magnus Sahlgren

Pavia, 12 September 2012



Recap

Words-by-regions matrices and LSA

Words-by-words-matrices and HAL

Dependency-based models



Recap

Words-by-regions matrices and LSA

Words-by-words-matrices and HAL

Dependency-based models



Recap

Words-by-regions matrices and LSA

Words-by-words-matrices and HAL

Dependency-based models



Recap

Words-by-regions matrices and LSA

Words-by-words-matrices and HAL

Dependency-based models



This lecture

Word space models in the lab

vs.

Word space models in the Real World

(dumbing down and scaling up)



This lecture

Word space models in the lab

vs.

Word space models in the Real World

(dumbing down and scaling up)



This lecture

Word space models in the lab

vs.

Word space models in the Real World

(dumbing down and scaling up)



Word space models in the lab

Corpora (e.g. TASA, ANC, BNC, WaC...)

Small- to medium-sized

Static

Editorial (for the most part)



Word space models in the lab

Corpora (e.g. TASA, ANC, BNC, WaC...)

Small- to medium-sized

Static

Editorial (for the most part)



Word space models in the lab

Corpora (e.g. TASA, ANC, BNC, WaC...)

Small- to medium-sized

Static

Editorial (for the most part)



Word space models in the lab

Corpora (e.g. TASA, ANC, BNC, WaC...)

Small- to medium-sized

Static

Editorial (for the most part)



Word space models in the lab

Processing cost is not critical

Processing dependencies are acceptable, and sometimes even

preferred



Word space models in the lab

Processing cost is not critical

Processing dependencies are acceptable, and sometimes even

preferred



Word space models in the lab
Koptjevskaja-Tamm & Sahlgren, 2012

General (BNC) News (Reuters) Blogg (Spinn3r)

hot

boiling warm casto�

distilled inclement bomsight

brackish wintry warm

drinking changeable scald

cold mild bottled

cold

hot inclement cream

franco-prussian mild cube

boer warm rink

iran-iraq wintry �oe

napoleonic changeable skating



Computational Semantics in the Real World

Data

Big Data

Dynamic (streaming) data

Non-editorial (i.e. noisy)



Computational Semantics in the Real World

Data

Big Data

Dynamic (streaming) data

Non-editorial (i.e. noisy)



Computational Semantics in the Real World

Data

Big Data

Dynamic (streaming) data

Non-editorial (i.e. noisy)



Computational Semantics in the Real World

Data

Big Data

Dynamic (streaming) data

Non-editorial (i.e. noisy)



Example 1

recommend

recomend 0.972

reccomend 0.968

reccommend 0.941

looove 0.870

loooove 0.863

lurve 0.850

love 0.846

loooooove 0.836



Example 2

good bad

great 0.91 weird 0.86

prefect 0.83 sucky 0.86

perfect 0.83 scary 0.86

pristine 0.81 cool 0.85

stable 0.80 nasty 0.84

grat 0.80 dumb 0.84

fantastic 0.80 sad 0.84

�awless 0.79 lame 0.84

mint 0.79 creepy 0.84

immaculate 0.79 stupid 0.84



Computational Semantics in the Real World

New words in New Text



Computational Semantics in the Real World

Processing cost is critical

Processing dependencies are a liability



Computational Semantics in the Real World

Processing cost is critical

Processing dependencies are a liability



Computational Semantics in the Real World

Problem: the huge co-occurrence matrix

Solution: dimension reduction



Computational Semantics in the Real World

Problem: the huge co-occurrence matrix

Solution: dimension reduction



Dimension Reduction

Matrix factorization: Principal Component Analysis (PCA),

Singular Value Decomposition (SVD), Independent Component

Analysis (ICA), Non-negative Matrix Factorization (NMF), etc.

Random projection: A′m,k = Am,nRn,k

where k � n

Simple statistics (e.g. column variance)



Dimension Reduction

Matrix factorization: Principal Component Analysis (PCA),

Singular Value Decomposition (SVD), Independent Component

Analysis (ICA), Non-negative Matrix Factorization (NMF), etc.

Random projection: A′m,k = Am,nRn,k

where k � n

Simple statistics (e.g. column variance)



Dimension Reduction

Matrix factorization: Principal Component Analysis (PCA),

Singular Value Decomposition (SVD), Independent Component

Analysis (ICA), Non-negative Matrix Factorization (NMF), etc.

Random projection: A′m,k = Am,nRn,k

where k � n

Simple statistics (e.g. column variance)



Dimension Reduction

Problem: the huge co-occurrence matrix

Solution: don't build the huge co-occurrence matrix!



Dimension Reduction

Problem: the huge co-occurrence matrix

Solution: don't build the huge co-occurrence matrix!



Pre-de�ned contexts

One approach: use a small set of pre-de�ned contexts (words,

tuples, etc.)

Another approach: Random Indexing



Pre-de�ned contexts

One approach: use a small set of pre-de�ned contexts (words,

tuples, etc.)

Another approach: Random Indexing



Random Indexing

Designed to be on-line, scalable and e�cient

Based on Pentti Kanerva's work on sparse distributed memory

Can be used with documents, words, tuples (and anything else) as

contexts



Random Indexing

Designed to be on-line, scalable and e�cient

Based on Pentti Kanerva's work on sparse distributed memory

Can be used with documents, words, tuples (and anything else) as

contexts



Random Indexing

Designed to be on-line, scalable and e�cient

Based on Pentti Kanerva's work on sparse distributed memory

Can be used with documents, words, tuples (and anything else) as

contexts



Random Indexing

A standard co-occurrence matrix uses one unique dimension per

context

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
w1

w2

w3

...

wm


0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 0





Random Indexing

Random Indexing uses several non-unique dimensions per context

r1 r2 r3 r4 r5
w1

w2

w3

...

wm


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


c1 = [r1, r3]



Random Indexing

Random Indexing uses several non-unique dimensions per context

r1 r2 r3 r4 r5
w1

w2

w3

...

wm


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


c1 = [r1, r3] c2 = [r1, r4]



Random Indexing

Random Indexing uses several non-unique dimensions per context

r1 r2 r3 r4 r5
w1

w2

w3

...

wm


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


c1 = [r1, r3] c2 = [r1, r4] c2 = [r2, r4]



Random Indexing

The dimensionality is not de�ned by the number of contexts: it is a

parameter (normally on the order of thousands)

This means that in Random Indexing, the dimensionality never

increases



Random Indexing

The dimensionality is not de�ned by the number of contexts: it is a

parameter (normally on the order of thousands)

This means that in Random Indexing, the dimensionality never

increases



Random Indexing

Which dimensions a certain context is represented by is selected at

random (hence the name random indexing)

The risk of randomly selecting the exact same dimensions for two

di�erent contexts is negligible (we'll come back to why)



Random Indexing

Which dimensions a certain context is represented by is selected at

random (hence the name random indexing)

The risk of randomly selecting the exact same dimensions for two

di�erent contexts is negligible (we'll come back to why)



Random Indexing

The distributed random representation for a context is called a

random index vector:

aij =


+1 with probability

ε/2
k

0 with probability k−ε
k

−1 with probability
ε/2
k

where ε is the number of active dimensions and k is the

dimensionality



Random Indexing

The distributed random representation for a context is called a

random index vector:

aij =


+1 with probability

ε/2
k

0 with probability k−ε
k

−1 with probability
ε/2
k

where ε is the number of active dimensions and k is the

dimensionality



Random Indexing

Random index vectors are:

High-dimensional

Sparse (a small number of active dimensions)

Ternary (active dimensions have either +1 or −1)

Random



Random Indexing

Random index vectors are:

High-dimensional

Sparse (a small number of active dimensions)

Ternary (active dimensions have either +1 or −1)

Random



Random Indexing

Random index vectors are:

High-dimensional

Sparse (a small number of active dimensions)

Ternary (active dimensions have either +1 or −1)

Random



Random Indexing

Random index vectors are:

High-dimensional

Sparse (a small number of active dimensions)

Ternary (active dimensions have either +1 or −1)

Random



Random Indexing

Random index vectors are:

High-dimensional

Sparse (a small number of active dimensions)

Ternary (active dimensions have either +1 or −1)

Random



Random Indexing

Context vectors are accumulated incrementally

Each word has a context vector (initially empty)

Each context is assigned a random index vector

Every time a word occurs, the context's random index vector is

added to the word's context vector



Random Indexing

Context vectors are accumulated incrementally

Each word has a context vector (initially empty)

Each context is assigned a random index vector

Every time a word occurs, the context's random index vector is

added to the word's context vector



Random Indexing

Context vectors are accumulated incrementally

Each word has a context vector (initially empty)

Each context is assigned a random index vector

Every time a word occurs, the context's random index vector is

added to the word's context vector



Random Indexing

Context vectors are accumulated incrementally

Each word has a context vector (initially empty)

Each context is assigned a random index vector

Every time a word occurs, the context's random index vector is

added to the word's context vector



Random Indexing

Words-by-regions-style

Every time a word occurs, add the region's index vector to the

word's context vector

Words-by-words-style

Every time a word occurs, add the index vectors of the surrounding

words to the word's context vector



Random Indexing

Words-by-regions-style

Every time a word occurs, add the region's index vector to the

word's context vector

Words-by-words-style

Every time a word occurs, add the index vectors of the surrounding

words to the word's context vector



Random Indexing

Word w1 occurs in document d1 with index vector:

[+1, 0,−1, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

Word w1 occurs in document d1 with index vector:

[+1, 0,−1, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

Word w1 occurs in document d1 with index vector:

[+1, 0,−1, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


+1 0 −1 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

Word w1 occurs in the sequence w2w1w3

where w2 has index vector: [+1, 0,−1, ..., 0]
and w3 has index vector: [+1,−1, 0, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

Word w1 occurs in the sequence w2w1w3

where w2 has index vector: [+1, 0,−1, ..., 0]
and w3 has index vector: [+1,−1, 0, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

Word w1 occurs in the sequence w2w1w3

where w2 has index vector: [+1, 0,−1, ..., 0]
and w3 has index vector: [+1,−1, 0, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

Word w1 occurs in the sequence w2w1w3

where w2 has index vector: [+1, 0,−1, ..., 0]
and w3 has index vector: [+1,−1, 0, ..., 0]

r1 r2 r3 . . . rk
w1

w2

w3

...

wm


+2 −1 −1 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





Random Indexing

A context vector is a sum of random index vectors

Captures the same information as standard co-occurrence matrices

but using considerably less dimensions (= scalable)



Random Indexing

A context vector is a sum of random index vectors

Captures the same information as standard co-occurrence matrices

but using considerably less dimensions (= scalable)



Random Indexing

A context vector is a sum of random index vectors

Captures the same information as standard co-occurrence matrices

but using considerably less dimensions (= scalable)



Random Indexing

The underlying maths

The same as in random projection (the Johnson-Lindenstrauss

lemma):

A′m,k = Am,nRn,k

but without building the (huge) co-occurrence matrix Am,n



Random Indexing

The underlying maths

The same as in random projection (the Johnson-Lindenstrauss

lemma):

A′m,k = Am,nRn,k

but without building the (huge) co-occurrence matrix Am,n



Random Indexing

The underlying maths

The same as in random projection (the Johnson-Lindenstrauss

lemma):

A′m,k = Am,nRn,k

but without building the (huge) co-occurrence matrix Am,n



Random Indexing

The underlying maths

In a standard co-occurrence matrix, the contexts are orthogonal to

each other

The distributed random index vectors are nearly orthogonal to each

other

Selecting dimensions at random in a high-dimensional space will

approximate orthogonality



Random Indexing

The underlying maths

In a standard co-occurrence matrix, the contexts are orthogonal to

each other

The distributed random index vectors are nearly orthogonal to each

other

Selecting dimensions at random in a high-dimensional space will

approximate orthogonality



Random Indexing

The underlying maths

In a standard co-occurrence matrix, the contexts are orthogonal to

each other

The distributed random index vectors are nearly orthogonal to each

other

Selecting dimensions at random in a high-dimensional space will

approximate orthogonality



Random Indexing

The underlying maths

In a standard co-occurrence matrix, the contexts are orthogonal to

each other

The distributed random index vectors are nearly orthogonal to each

other

Selecting dimensions at random in a high-dimensional space will

approximate orthogonality



Random Indexing

Lab:

Build a Random Indexing model



Random Indexing

Lab:

Build a Random Indexing model



Random Indexing

Additional re�nements:

Word order by permutations

Syntagmatic relations by inverse permutations



Random Indexing

Additional re�nements:

Word order by permutations

Syntagmatic relations by inverse permutations



Random Indexing

Additional re�nements:

Word order by permutations

Syntagmatic relations by inverse permutations



Random Permutations

A general technique for encoding structure in distributed

representations

Without sacri�cing scalability, e�ciency and performance

One application: encoding word order



Random Permutations

A general technique for encoding structure in distributed

representations

Without sacri�cing scalability, e�ciency and performance

One application: encoding word order



Random Permutations

A general technique for encoding structure in distributed

representations

Without sacri�cing scalability, e�ciency and performance

One application: encoding word order



Word Order

A context vector is a sum of (random) index vectors

Word order does not matter when summing vectors:

�the baby fed the bear�

c(fed) = r(the) + r(baby) + r(the) + r(bear)

�the bear ate the baby�

c(ate) = r(the) + r(bear) + r(the) + r(baby)



Word Order

A context vector is a sum of (random) index vectors

Word order does not matter when summing vectors:

�the baby fed the bear�

c(fed) = r(the) + r(baby) + r(the) + r(bear)

�the bear ate the baby�

c(ate) = r(the) + r(bear) + r(the) + r(baby)



Word Order

A context vector is a sum of (random) index vectors

Word order does not matter when summing vectors:

�the baby fed the bear�

c(fed) = r(the) + r(baby) + r(the) + r(bear)

�the bear ate the baby�

c(ate) = r(the) + r(bear) + r(the) + r(baby)



Word Order

A context vector is a sum of (random) index vectors

Word order does not matter when summing vectors:

�the baby fed the bear�

c(fed) = r(the) + r(baby) + r(the) + r(bear)

�the bear ate the baby�

c(ate) = r(the) + r(bear) + r(the) + r(baby)



Encoding word order

One solution: circular convolution (HRR, BEAGLE)

Context vectors are accumulated from n-grams (up to 7)

The n-grams are bound by circular convolution (∗) and an

auxiliary random vector (Φ)

c(fed) = (r(baby) ∗ Φ) + (r(the) ∗ r(baby) ∗ Φ) + ...



Encoding word order

One solution: circular convolution (HRR, BEAGLE)

Context vectors are accumulated from n-grams (up to 7)

The n-grams are bound by circular convolution (∗) and an

auxiliary random vector (Φ)

c(fed) = (r(baby) ∗ Φ) + (r(the) ∗ r(baby) ∗ Φ) + ...



Encoding word order

One solution: circular convolution (HRR, BEAGLE)

Context vectors are accumulated from n-grams (up to 7)

The n-grams are bound by circular convolution (∗) and an

auxiliary random vector (Φ)

c(fed) = (r(baby) ∗ Φ) + (r(the) ∗ r(baby) ∗ Φ) + ...



Encoding word order

One solution: circular convolution (HRR, BEAGLE)

Context vectors are accumulated from n-grams (up to 7)

The n-grams are bound by circular convolution (∗) and an

auxiliary random vector (Φ)

c(fed) = (r(baby) ∗ Φ) + (r(the) ∗ r(baby) ∗ Φ) + ...



Encoding word order

One solution: circular convolution (HRR, BEAGLE)

Context vectors are accumulated from n-grams (up to 7)

The n-grams are bound by circular convolution (∗) and an

auxiliary random vector (Φ)

c(fed) = (r(baby) ∗ Φ) + (r(the) ∗ r(baby) ∗ Φ) + ...



Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Direction vectors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) one step if a word occurs to the left

or right of the focus word (cf. HAL)

c(fed) = Π−1r(the) + Π−1 r(baby) + Π r(the) + Π r(bear)



Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Direction vectors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) one step if a word occurs to the left

or right of the focus word (cf. HAL)

c(fed) = Π−1r(the) + Π−1 r(baby) + Π r(the) + Π r(bear)



Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Direction vectors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) one step if a word occurs to the left

or right of the focus word (cf. HAL)

c(fed) = Π−1r(the) + Π−1 r(baby) + Π r(the) + Π r(bear)



Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Direction vectors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) one step if a word occurs to the left

or right of the focus word (cf. HAL)

c(fed) = Π−1r(the) + Π−1 r(baby) + Π r(the) + Π r(bear)



Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Order vetors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) as many steps as the distance to

the focus word

c(fed) = Π−2r(the) + Π−1 r(baby) + Π r(the) + Π2 r(bear)



Encoding word order

Another solution: permutation of vector coordinates

Permutation operation (Π): rotation of vector coordinates.

Order vetors: rotate the random index vectors to the left

(Π−n) or to the right (Πn) as many steps as the distance to

the focus word

c(fed) = Π−2r(the) + Π−1 r(baby) + Π r(the) + Π2 r(bear)



Context window size

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

10+109+98+87+76+65+54+43+32+21+1

%
 c

or
re

ct

Context window

Order vectors
Direction vectors
Context vectors

Combined vectors (Context + Direction)



Paired-associative memory

Given a trace vector t = (x1 � y1) + (x2 � y2) + (x3 � y3) + ...

and a probe vector xi ,

�nd the associate yi from a set of possible random vectors.



Paired-associative memory

Given a trace vector t = (x1 � y1) + (x2 � y2) + (x3 � y3) + ...

and a probe vector xi ,

�nd the associate yi from a set of possible random vectors.



Paired-associative memory

Given a trace vector t = (x1 � y1) + (x2 � y2) + (x3 � y3) + ...

and a probe vector xi ,

�nd the associate yi from a set of possible random vectors.



Circular convolution



Random permutations



Results

TOEFL synonym scores, averaged over 3 runs using di�erent

initializations of the random vectors.

BEAGLE score: 57.81%

Random permutations: ≈ 80%

(Roget's thesaurus: 78.75%, WordNet < 25%

Jarmasz & Szpakowicz, 2003)



Results

TOEFL synonym scores, averaged over 3 runs using di�erent

initializations of the random vectors.

BEAGLE score: 57.81%

Random permutations: ≈ 80%

(Roget's thesaurus: 78.75%, WordNet < 25%

Jarmasz & Szpakowicz, 2003)



Results

TOEFL synonym scores, averaged over 3 runs using di�erent

initializations of the random vectors.

BEAGLE score: 57.81%

Random permutations: ≈ 80%

(Roget's thesaurus: 78.75%, WordNet < 25%

Jarmasz & Szpakowicz, 2003)



Results

TOEFL synonym scores, averaged over 3 runs using di�erent

initializations of the random vectors.

BEAGLE score: 57.81%

Random permutations: ≈ 80%

(Roget's thesaurus: 78.75%, WordNet < 25%

Jarmasz & Szpakowicz, 2003)



Order and directional neighbors

Extract frequent left and right neighbors by using the inverse

permutation.

Whenever �baby fed� occurs, Π−1 r(baby) is added to c(fed).

To retrieve �baby� from c(fed) we will compare Πc(fed) to all

random index vectors.



Order and directional neighbors

Extract frequent left and right neighbors by using the inverse

permutation.

Whenever �baby fed� occurs, Π−1 r(baby) is added to c(fed).

To retrieve �baby� from c(fed) we will compare Πc(fed) to all

random index vectors.



Order and directional neighbors

Extract frequent left and right neighbors by using the inverse

permutation.

Whenever �baby fed� occurs, Π−1 r(baby) is added to c(fed).

To retrieve �baby� from c(fed) we will compare Πc(fed) to all

random index vectors.



Examples

KING

Word before Word after

luther .24 queen .43

martin .22 england .25

become .17 midas .16

french .14 france .15

dr .13 jr .14



Examples

PRESIDENT

Word before Word after

vice .69 roosevelt .22

become .23 johnson .20

elect .20 nixon .18

goodway .09 kennedy .15

former .09 lincoln .15



Random Permutations

Lab:

Build a Random Permutations model



Random Permutations

Lab:

Build a Random Permutations model



Random Indexing

Summary

Implicit (built-in) dimension reduction

Any kind of context

Permutations to handle structure

Parallelizable

Generalizable to tensors



Random Indexing

Summary

Implicit (built-in) dimension reduction

Any kind of context

Permutations to handle structure

Parallelizable

Generalizable to tensors



Random Indexing

Summary

Implicit (built-in) dimension reduction

Any kind of context

Permutations to handle structure

Parallelizable

Generalizable to tensors



Random Indexing

Summary

Implicit (built-in) dimension reduction

Any kind of context

Permutations to handle structure

Parallelizable

Generalizable to tensors



Random Indexing

Summary

Implicit (built-in) dimension reduction

Any kind of context

Permutations to handle structure

Parallelizable

Generalizable to tensors



Random Indexing

Summary

Implicit (built-in) dimension reduction

Any kind of context

Permutations to handle structure

Parallelizable

Generalizable to tensors



Lab

Use GSDM and S-space to:

Experiment with Random Indexing

Experiment with Random Permutations



Lab

Use GSDM and S-space to:

Experiment with Random Indexing

Experiment with Random Permutations



Lab

Use GSDM and S-space to:

Experiment with Random Indexing

Experiment with Random Permutations


