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(guitar, coord, violin)

hyper relatum is a hypernym of the target (rabbit, hyper,

animal)

mero relatum is a noun referring to a part of the target
(beaver, mero, fur)

attri relatum expresses an attribute of the target (sword,
attri, dangerous)

event relatum expresses an event involving the target
(butterfly, event, fly)

ran.k relatum is a random noun (k = n), adjective (k = j) and
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target relation relata

rabbit hyper animal, chordate, mammal, . . .
guitar coord violin, trumpet, piano, . . .
beaver mero fur, head, tooth, . . .
sword attri dangerous, long, heavy, . . .

butter�y event �y, catch, �utter, . . .
villa ran.n disease, assistance, game, . . .

donkey ran.v coincide, express, vent, . . .
hat ran.j quarterly, massive, obvious, . . .
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to account for frequency e�ects

For each relation type, the distribution of scores across the 200
concepts is summarized with a boxplot
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Evaluation

Whatever we �nd in the data is the truth (about that data)
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Multilingual Word Spaces

SWEDISH ITALIAN

Jag förklarar Europaparla-
mentets session återupptagen
efter avbrottet den 17 decem-
ber . Jag vill på nytt önska er
ett gott nytt år och jag hoppas
att ni haft en trevlig semester .

Dichiaro ripresa la sessione del
Parlamento europeo , inter-
rotta venerdì 17 dicembre e rin-
novo a tutti i miei migliori au-
guri nella speranza che abbiate
trascorso delle buone vacanze .

Som ni kunnat konstatera
ägde den stora år 2000-buggen
aldrig rum .

Come avrete avuto modo di
constatare il grande baco del
millennio non si è materializ-
zato .



Multilingual Word Spaces

Single word translations with di�erent number of alternatives
(Sahlgren & Karlgren, 2005)
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Context vector:

for each word token wi , take the words in its context Ci

C1 = {cat, chase}
C2 = {hacker, click, button}

for each Ci , build a context vector
−→
Ci by summing

thedistributional vectors of the words in Ci−→
C1 =

−−→
cat+

−−−→
chase−→

C2=
−−−−→
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Word sense discrimination
Schütze 1998

A context vector is the centroid of the distributional vectors of the
context words
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1 take all the contexts of a word w in a training corpus
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Ci , for each of these contexts

3 cluster the context vectors

4 for each cluster, take the centroid vector of the cluster, and
use this vector to represent one sense of w (sense vector, −→sj )
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The principle of compositionality

The meaning of a complex expression is a function of the meanings
of its parts and of their syntactic mode of combination
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a theory of lexical meanings: assigns meanings to the atomic
parts (e.g. words)

a theory of syntactic structures: determines the structure of
complex expressions

a theory of semantic composition: determines functions that
compose meanings
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on syntactic structure?
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Compositionality

The distributional �meaning� of a phrase as the combined vector
built with the vectors of the words in the phrase
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Hierarchical structure has a central role in the organization of
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A taxonomy is a sequence of progressively broader categories,
related by the inclusion relation (ISA, hypernymy)
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Use directional similarity measures that are asymmetric
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Semantic Relations

WeedsPrec (Weeds & Weir, 2003; Weeds et al., 2004)

WeedsPrec(u, v) =

∑
f ∈Fu∩Fv

wu(f )∑
f ∈Fu

wu(f )
(1)

ClarkeDE (Clarke 2009)

ClarkeDE (u, v) =

∑
f ∈Fu∩Fv

min(wu(f ),wv (f ))∑
f ∈Fu

wu(f )
(2)

invCL (Lenci & Benotto 2012)

invCL(u, v) =
√

ClarkeDE (u, v) ∗ (1− ClarkeDE (v , u)) (3)
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