Distributional Semantics

Magnus Sahlgren

Pavia, 13 September 2012

Syntagmatic and paradigmatic similarities

Co-occurrence matrix and distributional vectors

Syntagmatic and paradigmatic similarities

Co-occurrence matrix and distributional vectors

Syntagmatic and paradigmatic similarities

Co-occurrence matrix and distributional vectors

Syntagmatic and paradigmatic similarities

Co-occurrence matrix and distributional vectors

Words-by-words-matrices and HAL

Dependency-based models

Recap

Words-by-regions matrices and LSA

Words-by-words-matrices and HAL

Dependency-based models

Words-by-words-matrices and HAL

Dependency-based models

Words-by-words-matrices and HAL

Dependency-based models

Words-by-words-matrices and HAL

Dependency-based models

Evaluation

Applications

Evaluation

Applications

Evaluation

Applications

Evaluation

Applications

Vocabulary tests

Similarity ratings

Association norms

Behavioral data

Vocabulary tests

Similarity ratings

Association norms

Behavioral data

Multiple choice synonym tests (TOEFL, ESL)

target	alternatives	correct
flawed	lustrous imperfect crude tiny	

Multiple choice synonym tests (TOEFL, ESL)

target	alternatives	correct
flawed	lustrous imperfect crude tiny	\checkmark

Multiple choice synonym tests (TOEFL, ESL)

target	alternatives	correct
flawed	lustrous	
	imperfect	
	crude	
	tiny	

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

State-of-the-art: 92.50% correct answers (Rapp, 2003)

Balanced corpus (BNC)

- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

- Balanced corpus (BNC)
- Stop word filtering and lemmatization
- 2+2 sized context window
- Entropy-based weighting
- Exclude low-frequent words
- Dimension reduction (SVD to 300 dimensions)

Thesaurus comparison

Compare the overlap between a word space and a thesaurus (e.g. Roget's)

Compute the correlation between distributional similarity and graph distance in WordNet

Thesaurus comparison

Compare the overlap between a word space and a thesaurus (e.g. Roget's)

Compute the correlation between distributional similarity and graph distance in WordNet

Thesaurus comparison

Compare the overlap between a word space and a thesaurus (e.g. Roget's)

Compute the correlation between distributional similarity and graph distance in WordNet

Thesaurus comparison

Compare the overlap between a word space and a thesaurus (e.g. Roget's)

Compute the correlation between distributional similarity and graph distance in WordNet

Evaluation Similarity ratings

Rate the similarity betwen given word pairs

word 1	word 2	mean rating
tiger	cat	7.35
sex	love	6.77
stock	cd	1.31

What kind of similarity?

Evaluation Similarity ratings

Rate the similarity betwen given word pairs

word 1	word 2	mean rating
tiger	cat	7.35
sex	love	6.77
stock	cd	1.31

What kind of similarity?

Rate the similarity betwen given word pairs

word 1	word 2	mean rating
tiger	cat	7.35
sex	love	6.77
stock	cd	1.31

What kind of similarity?

Rate the similarity betwen given word pairs

word 1	word 2	mean rating
tiger	cat	7.35
sex	love	6.77
stock	cd	1.31

What kind of similarity?

Name the first word that comes to mind when having seen a stimuli

stimuli	respons	association strength
galaxy	stars	0.413
galaxy	space	0.107
galaxy	far	0.020

Name the first word that comes to mind when having seen a stimuli

stimuli	respons	association strength
galaxy	stars	0.413
galaxy	space	0.107
galaxy	far	0.020

Name the first word that comes to mind when having seen a stimuli

stimuli	respons	association strength
galaxy	stars	0.413
galaxy	space	0.107
galaxy	far	0.020

Name the first word that comes to mind when having seen a stimuli

stimuli	respons	association strength
galaxy	stars	0.413
galaxy	space	0.107
galaxy	far	0.020

Hearing/reading a "related" prime facilitates access to a target in various lexical tasks (naming, lexical decision, reading)

The word *pear* is recognized/accessed faster if it is heard/read after *apple*

Hearing/reading a "related" prime facilitates access to a target in various lexical tasks (naming, lexical decision, reading)

The word *pear* is recognized/accessed faster if it is heard/read after *apple*

Modelling semantic priming in word space

- O Measure the similarity between the distributional vectors of each prime-target pair
- On the similarity between related items should be significantly higher than similarity between unrelated items

Modelling semantic priming in word space

- Measure the similarity between the distributional vectors of each prime-target pair
- On The similarity between related items should be significantly higher than similarity between unrelated items

Modelling semantic priming in word space

- Measure the similarity between the distributional vectors of each prime-target pair
- On the similarity between related items should be significantly higher than similarity between unrelated items

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: *dove/peace*
- phrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: *dove/peace*
- phrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: *short/tall*
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: *dove/peace*
- phrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: *dove/peace*
- phrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: train/truck
- super- and subordinate pairs: container/bottle
- free association pairs: dove/peace
- phrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: dove/peace
- phrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: *dove/peace*
- ophrasal associates: vacant/building

Hodgson (1991) single word lexical decision task, 136 prime-target pairs

- synonyms: to dread/to fear
- antonyms: short/tall
- coordinates: *train/truck*
- super- and subordinate pairs: container/bottle
- free association pairs: *dove/peace*
- phrasal associates: vacant/building

Dependency-based model (Padó & Lapata 2007)

Mean distance values for Related and Unrelated prime-target pairs; Prime Effect size (= Related - Unrelated) for the dependency model and ICE.

Lexical Relation	Ν	Related	Unrelated	Effect (dependency)	Effect (ICE)
Synonymy	23	0.267	0.102	0.165**	0.063
Superordination	21	0.227	0.121	0.106**	0.067
Category coordination	23	0.256	0.119	0.137**	0.074
Antonymy	24	0.292	0.127	0.165**	0.097
Conceptual association	23	0.204	0.121	0.083**	0.086
Phrasal association	22	0.146	0.103	0.043**	0.058
**p < 0.01 (2-tailed)					

26 554 tuples expressing a *relation* between a target concept and a relatum

200 basic-level nominal concrete concepts, 8 relation types, each instantiated by multiple relata (nouns, verbs or adjectives)

26 554 tuples expressing a *relation* between a target concept and a relatum

200 basic-level nominal concrete concepts, 8 relation types, each instantiated by multiple relata (nouns, verbs or adjectives)

26 554 tuples expressing a *relation* between a target concept and a relatum

200 basic-level nominal concrete concepts, 8 relation types, each instantiated by multiple relata (nouns, verbs or adjectives)

Target concepts are 200 English concrete nouns (100 living and 100 non-living) grouped into 17 broader classes

amphibian_reptile, appliance, bird, building, clothing, container, fruit, furniture, ground_mammal, insect, musical_instrument, tool, tree, vehicle, water_animal, weapon

Target concepts are 200 English concrete nouns (100 living and 100 non-living) grouped into 17 broader classes

amphibian_reptile, appliance, bird, building, clothing, container, fruit, furniture, ground_mammal, insect, musical_instrument, tool, tree, vehicle, water_animal, weapon

Relations

coord relatum is a co-hyponym (coordinate) of the target
 (guitar, coord, violin)

- hyper relatum is a hypernym of the target (rabbit, hyper, animal)
- mero relatum is a noun referring to a part of the target
 (beaver, mero, fur)

- event relatum expresses an event involving the target
 (butterfly, event, fly)
- ran.k relatum is a random noun (k = n), adjective (k = j) and verb (k = v) (donkey, ran.v, coincide)

Relations

- coord relatum is a co-hyponym (coordinate) of the target
 (guitar, coord, violin)
- hyper relatum is a hypernym of the target (rabbit, hyper, animal)
- mero relatum is a noun referring to a part of the target
 (beaver, mero, fur)
- event relatum expresses an event involving the target (butterfly, event, fly)
- ran.k relatum is a random noun (k = n), adjective (k = j) and verb (k = v) (donkey, ran.v, coincide)

target	relation	relata
rabbit	hyper	animal, chordate, mammal,
guitar	coord	violin, trumpet, piano,
beaver	mero	fur, head, tooth,
sword	attri	dangerous, long, heavy,
butterfly	event	fly, catch, flutter,
villa	ran.n	disease, assistance, game,
donkey	ran.v	coincide, express, vent,
hat	ran.j	quarterly, massive, obvious,

> For each of the 200 BLESS concepts, 8 similarity scores are computed, by picking the relatum with the highest similarity for each relation

The 8 similarity scores are transformed onto standardized *z*-scores to account for frequency effects

For each of the 200 BLESS concepts, 8 similarity scores are computed, by picking the relatum with the highest similarity for each relation

The 8 similarity scores are transformed onto standardized *z*-scores to account for frequency effects

For each of the 200 BLESS concepts, 8 similarity scores are computed, by picking the relatum with the highest similarity for each relation

The 8 similarity scores are transformed onto standardized *z*-scores to account for frequency effects

For each of the 200 BLESS concepts, 8 similarity scores are computed, by picking the relatum with the highest similarity for each relation

The 8 similarity scores are transformed onto standardized *z*-scores to account for frequency effects

> Document: a words-by-documents matrix ContentWindow20: a 20+20-sized context window ContentWindow2: a 2+2-sized context window

Document: a words-by-documents matrix

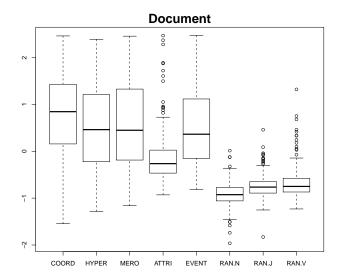
ContentWindow20: a 20+20-sized context window ContentWindow2: a 2+2-sized context window

> Document: a words-by-documents matrix ContentWindow20: a 20+20-sized context window ContentWindow2: a 2+2-sized context window

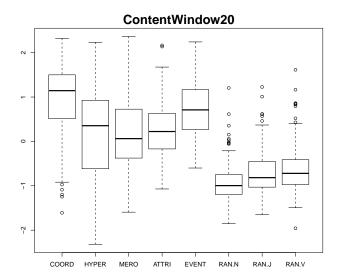
Evaluation BLESS (Baroni & Lenci, 2011)

> Document: a words-by-documents matrix ContentWindow20: a 20+20-sized context window ContentWindow2: a 2+2-sized context window

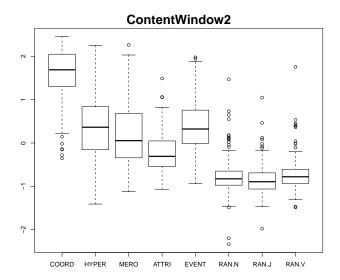
Evaluation



Evaluation



Evaluation



Whatever we find in the data is the truth (about that data)

- Automatically acquiring (multilingual) lexical resources
- Word sense discrimination
- Selectional preferences
- • • •

• Automatically acquiring (multilingual) lexical resources

- Word sense discrimination
- Selectional preferences
- ...

- Automatically acquiring (multilingual) lexical resources
- Word sense discrimination
- Selectional preferences
- • • •

- Automatically acquiring (multilingual) lexical resources
- Word sense discrimination
- Selectional preferences
- • • •

- Automatically acquiring (multilingual) lexical resources
- Word sense discrimination
- Selectional preferences
- Θ ...

Different word spaces with aligned contexts

(Can also be used across domains and genres)

Use parallel data and train a words-by-documents model

Different word spaces with aligned contexts

(Can also be used across domains and genres)

Use parallel data and train a words-by-documents model

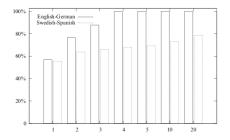
Different word spaces with aligned contexts

(Can also be used across domains and genres)

Use parallel data and train a words-by-documents model

SWEDISH	ITALIAN	
Jag förklarar Europaparla- mentets session återupptagen efter avbrottet den 17 decem- ber . Jag vill på nytt önska er ett gott nytt år och jag hoppas att ni haft en trevlig semester .	Dichiaro ripresa la sessione del Parlamento europeo , inter- rotta venerdì 17 dicembre e rin- novo a tutti i miei migliori au- guri nella speranza che abbiate trascorso delle buone vacanze .	
Som ni kunnat konstatera ägde den stora år 2000-buggen aldrig rum .	Come avrete avuto modo di constatare il grande baco del millennio non si è materializ- zato .	

Single word translations with different number of alternatives (Sahlgren & Karlgren, 2005)



Schütze 1998

Build different vectors for different senses

Context vector:

for each word token w_i, take the words in its context C_i C₁ = {cat, chase} C₂ = {hacker, click, button}
for each C_i, build a context vector C_i by summing the distributional vectors of the words in C_i C₁ = cat + chase C₂ = hacker + click + button

Schütze 1998

Build different vectors for different senses

Context vector:

• for each word token w_i , take the words in its context C_i

 $\mathcal{C}_1 = \{ \texttt{cat, chase} \}$ $\mathcal{C}_2 = \{ \texttt{hacker, click, button} \}$

 for each C_i, build a context vector C_i by summing thedistributional vectors of the words in C_i

$$\overrightarrow{C_1} = \overrightarrow{cat} + \overrightarrow{chase}$$

$$\overrightarrow{C_2} = \overrightarrow{hacker} + \overrightarrow{click} + \overrightarrow{button}$$

Schütze 1998

Build different vectors for different senses

Context vector:

• for each word token w_i , take the words in its context C_i $C_1 = \{ \text{cat, chase} \}$

 $C_2 = \{ \text{hacker, click, button} \}$

 for each C_i, build a context vector C_i by summing thedistributional vectors of the words in C_i

$$\overrightarrow{C_1} = \overrightarrow{cat} + \overrightarrow{chase}$$

$$\overrightarrow{C_2} = \overrightarrow{hacker} + \overrightarrow{click} + \overrightarrow{button}$$

Schütze 1998

Build different vectors for different senses

Context vector:

• for each word token w_i , take the words in its context C_i

$$C_1 = \{ \text{cat, chase} \}$$

 $C_2 = \{ \text{hacker, click, button} \}$

• for each C_i , build a context vector $\overrightarrow{C_i}$ by summing the distributional vectors of the words in C_i $\overrightarrow{C_1} = \overrightarrow{cat} + \overrightarrow{chase}$ $\overrightarrow{C_2} = \overrightarrow{hacker} + \overrightarrow{click} + \overrightarrow{button}$

Schütze 1998

Build different vectors for different senses

Context vector:

• for each word token w_i , take the words in its context C_i

 $C_1 = \{ \text{cat, chase} \}$ $C_2 = \{ \text{hacker, click, button} \}$

• for each C_i , build a context vector $\overrightarrow{C_i}$ by summing the distributional vectors of the words in C_i

$$\overrightarrow{C_1} = \overrightarrow{cat} + \overrightarrow{chase}$$

$$\overrightarrow{C_2} = \overrightarrow{hacker} + \overrightarrow{click} + \overrightarrow{button}$$

Schütze 1998

Build different vectors for different senses

Context vector:

• for each word token w_i , take the words in its context C_i

$$\mathcal{C}_1 = \{ \texttt{cat, chase} \}$$

 $\mathcal{C}_2 = \{ \texttt{hacker, click, button} \}$

• for each C_i , build a context vector $\overrightarrow{C_i}$ by summing the distributional vectors of the words in C_i

$$\overrightarrow{C_1} = \overrightarrow{cat} + \overrightarrow{chase}$$

$$\overrightarrow{C_2} = \overrightarrow{hacker} + \overrightarrow{click} + \overrightarrow{button}$$

Schütze 1998

Build different vectors for different senses

Context vector:

• for each word token w_i , take the words in its context C_i

$$\mathcal{C}_1 = \{ \texttt{cat, chase} \} \ \mathcal{C}_2 = \{ \texttt{hacker, click, button} \}$$

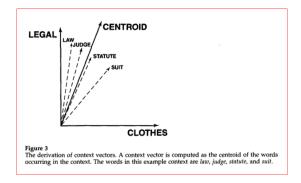
• for each C_i , build a context vector $\overrightarrow{C_i}$ by summing the distributional vectors of the words in C_i

$$\overrightarrow{C_1} = \overrightarrow{cat} + \overrightarrow{chase}$$

$$\overrightarrow{C_2} = \overrightarrow{hacker} + \overrightarrow{click} + \overrightarrow{button}$$

Schütze 1998

A context vector is the *centroid* of the distributional vectors of the context words



- 1 take all the contexts of a word w in a training corpus
- 2 build the context vector C_i , for each of these contexts
- Output is a cluster the context vectors
- If or each cluster, take the centroid vector of the cluster, and use this vector to represent one sense of w (sense vector, s;)

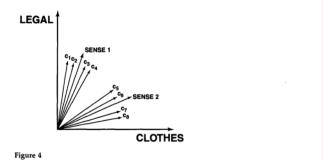
- $\mathbf{0}$ take all the contexts of a word w in a training corpus
- Output is a set of the set of
- Output of the context vectors
- If or each cluster, take the centroid vector of the cluster, and use this vector to represent one sense of w (sense vector, s_i)

- **1** take all the contexts of a word *w* in a training corpus
- **2** build the context vector $\overrightarrow{C_i}$, for each of these contexts
- I cluster the context vectors
- If or each cluster, take the centroid vector of the cluster, and use this vector to represent one sense of w (sense vector, s;)

- **1** take all the contexts of a word *w* in a training corpus
- **2** build the context vector $\overrightarrow{C_i}$, for each of these contexts
- Output is a cluster the context vectors
- If or each cluster, take the centroid vector of the cluster, and use this vector to represent one sense of w (sense vector, s_i)

- take all the contexts of a word w in a training corpus
- **2** build the context vector $\overrightarrow{C_i}$, for each of these contexts
- Output of the context vectors
- for each cluster, take the *centroid vector* of the cluster, and use this vector to represent one *sense* of w (*sense vector*, $\overrightarrow{s_i}$)

Schütze 1998



The derivation of sense vectors. Sense vectors are derived by clustering the context vectors of an ambiguous word (here, $c_1, c_2, c_3, c_4, c_5, c_6, c_7$, and c_8), and computing sense vectors as the centroids of the resulting clusters. The vectors SENSE 1 and SENSE 2 are the sense vectors of clusters { c_1, c_2, c_3, c_4 } and { c_5, c_6, c_7, c_8 }, respectively.

To assign a sense to a new instance of w in context C_k

- build the context vector $\overrightarrow{C_k}$
- ② assign to w in context C_k the sense j whose sense vector $\overrightarrow{s_j}$ is closest to $\overrightarrow{C_k}$

To assign a sense to a new instance of w in context C_k

- build the context vector $\overrightarrow{C_k}$
- ② assign to w in context C_k the sense j whose sense vector $\overrightarrow{s_j}$ is closest to $\overrightarrow{C_k}$

To assign a sense to a new instance of w in context C_k

- build the context vector $\overrightarrow{C_k}$
- ② assign to w in context C_k the sense j whose sense vector $\overrightarrow{s_j}$ is closest to $\overrightarrow{C_k}$

Level	Average of $2 \times sin^{-1}(\sqrt{X})$	Difference from Closest	Corresponding Accuracy
local, χ^2 , terms	2.11	0.13	76%
local, frequency, terms	2.24	0.13	81%
local, frequency, SVD	2.44	0.06	88%
local, χ^2 , SVD	2.50	0.06	90%
global, frequency, SVD	2.66	0.16	94%

Selectional preferences specify an abstract semantic type constraining the possible arguments of a predicate

- kill-obj: living_entity
- eat-obj: food
- drink-obj: liquid

Necessary to account for the possibility of generalizations to unseen arguments

Selectional preferences specify an abstract semantic type constraining the possible arguments of a predicate

- kill-obj: living_entity
- eat-obj: food
- drink-obj: liquid

Necessary to account for the possibility of generalizations to unseen arguments

Selectional preferences specify an abstract semantic type constraining the possible arguments of a predicate

- kill-obj: living_entity
- eat-obj: food
- odrink-obj: liquid

Necessary to account for the possibility of generalizations to unseen arguments

Selectional preferences specify an abstract semantic type constraining the possible arguments of a predicate

- kill-obj: living_entity
- eat-obj: food
- drink-obj: liquid

Necessary to account for the possibility of generalizations to unseen arguments

Selectional preferences specify an abstract semantic type constraining the possible arguments of a predicate

- kill-obj: living_entity
- eat-obj: food
- drink-obj: liquid

Necessary to account for the possibility of generalizations to unseen arguments

Selectional preferences specify an abstract semantic type constraining the possible arguments of a predicate

- kill-obj: living_entity
- eat-obj: food
- drink-obj: liquid

Necessary to account for the possibility of generalizations to unseen arguments

eat the aardvark (aardvark is a living entity)

eat the aardvark

(aardvark is a living entity)

eat the aardvark (aardvark is a living entity)

eat the aardvark (aardvark is a living entity)

eat the aardvark (aardvark is a living entity)

Semantic types are normally extracted from some ontology (e.g. WordNet)

Plausibilities are determined based on the semantic types

Semantic types are normally extracted from some ontology (e.g. WordNet)

Plausibilities are determined based on the semantic types

- verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)
 eat-v → cheese-n
- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005) juice-n → drink-v
- nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

Behavioral evidence (e.g., semantic priming) suggests that verbs and their arguments are arranged into a web of mutual expectations in the mental lexicon

 verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)

 $\mathtt{eat-v}
ightarrow \mathtt{cheese-n}$

- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005) juice-n → drink-v
- nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

- verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)
 eat-v → cheese-n
- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005) juice-n → drink-v
- nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

Behavioral evidence (e.g., semantic priming) suggests that verbs and their arguments are arranged into a web of mutual expectations in the mental lexicon

- verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)
 eat-v → cheese-n
- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005)

juice-n \rightarrow drink-v

 nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

- verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)
 eat-v → cheese-n
- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005) juice-n → drink-v
- nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

- verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)
 eat-v → cheese-n
- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005) juice-n → drink-v
- nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

- verbs activate expectations about prototypical noun arguments (Ferretti et al. 2001)
 eat-v → cheese-n
- nouns activate expectations about prototypical verbs they are arguments of (McRae et al. 2005) juice-n → drink-v
- nouns activate expectations about other nouns with which they are related by some event (Hare et al. 2009) key-n → door-n

Selectional preferences are gradual

arrest	a.	thief	
arrest	a	policeman	possible, but less probable
arrest	a	tree	

Selectional preferences are gradual

arrest	а	thief	very probable
arrest	а	policeman	possible, but less probable
arrest	а	tree	improbable

Two sources of expectations determining thematic fit judgments:

- Physical experience
- Distributional regularities (i.e. co-occurrences between verbs and arguments)

Two sources of expectations determining thematic fit judgments:

• Physical experience

• Distributional regularities (i.e. co-occurrences between verbs and arguments)

Two sources of expectations determining thematic fit judgments:

- Physical experience
- Distributional regularities (i.e. co-occurrences between verbs and arguments)

- Exemplar-based (Erk et al. 2010)
- Prototype-based (Baroni & Lenci 2010)

- Exemplar-based (Erk et al. 2010)
- Prototype-based (Baroni & Lenci 2010)

- Exemplar-based (Erk et al. 2010)
- Prototype-based (Baroni & Lenci 2010)

- Exemplar-based (Erk et al. 2010)
- Prototype-based (Baroni & Lenci 2010)

- All exemplars of the predicate slot
- The prototye vector of the predicate slot

- All exemplars of the predicate slot
- The prototye vector of the predicate slot

- All exemplars of the predicate slot
- The prototye vector of the predicate slot

- All exemplars of the predicate slot
- The prototye vector of the predicate slot

Human plausibility judgments of noun-verb pairs

shoot deer obj 6.4 shoot deer subj 1.0

Human plausibility judgments of noun-verb pairs

shoot	deer	obj	6.4
shoot	deer	subj	1.0

Performance measured with with Spearman ho correlation coefficient

MODEL	DATA SET 1	DATA SET 2
WordNet	3	24
Word space	21-41	34–60

Performance measured with with Spearman ho correlation coefficient

MODEL	DATA SET 1	DATA SET 2
WordNet	3	24
Word space	21-41	34–60

Plausibility of potential objects of kill

OBJECT	COSINE
kangaroo	0.51
person	0.45
robot	0.15
hate	0.11
flower	0.11
stone	0.05
fun	0.05
book	0.04
conversation	0.03
sympathy	0.01

Plausibility of potential objects of kill

OBJECT	COSINE
kangaroo	0.51
person	0.45
robot	0.15
hate	0.11
flower	0.11
stone	0.05
fun	0.05
book	0.04
conversation	0.03
sympathy	0.01

• Document processing (search, categorization, clustering)

- Bioinformatics
- Topic/event detection
- Sentiment analysis
- • •

- Document processing (search, categorization, clustering)
- Bioinformatics
- Topic/event detection
- Sentiment analysis
- • •

- Document processing (search, categorization, clustering)
- Bioinformatics
- Topic/event detection
- Sentiment analysis

• • • • •

- Document processing (search, categorization, clustering)
- Bioinformatics
- Topic/event detection
- Sentiment analysis

• • • •

- Document processing (search, categorization, clustering)
- Bioinformatics
- Topic/event detection
- Sentiment analysis
- Θ ...

Polysemy

Compositionality

Semantic relations

Polysemy

Compositionality

Semantic relations

Polysemy

Compositionality

Semantic relations

Polysemy

Compositionality

Semantic relations

Trivially solved (or rather ignored...) in formal semantics

The cat chases the mouse \Rightarrow mouse₁ The hacker clicks the mouse button \Rightarrow mouse₂

In word space, each word type has one vector The cat chases the mouse $\Rightarrow \overline{\text{mouse}}$ The hacker clicks the mouse button $\Rightarrow \overline{\text{mouse}}$

Trivially solved (or rather ignored...) in formal semantics The cat chases the mouse \Rightarrow mouse₁ The hacker clicks the mouse button \Rightarrow mouse₂

In word space, each word type has one vector The cat chases the mouse $\Rightarrow \overline{\mathrm{mouse}}$ The hacker clicks the mouse button $\Rightarrow \overline{\mathrm{mouse}}$

Trivially solved (or rather ignored...) in formal semantics The cat chases the mouse \Rightarrow mouse₁ The hacker clicks the mouse button \Rightarrow mouse₂

In word space, each word type has one vector The cat chases the mouse $\Rightarrow \overline{\mathrm{mouse}}$ The hacker clicks the mouse button $\Rightarrow \overline{\mathrm{mouse}}$

Trivially solved (or rather ignored...) in formal semantics The cat chases the mouse \Rightarrow mouse₁ The hacker clicks the mouse button \Rightarrow mouse₂

In word space, each word type has one vector The cat chases the mouse $\Rightarrow \overrightarrow{\text{mouse}}$ The hacker clicks the mouse button $\Rightarrow \overrightarrow{\text{mouse}}$

Trivially solved (or rather ignored...) in formal semantics The cat chases the mouse \Rightarrow mouse₁ The hacker clicks the mouse button \Rightarrow mouse₂

In word space, each word type has one vector The cat chases the mouse \Rightarrow mouse The hacker clicks the mouse button \Rightarrow mouse Trivially solved (or rather ignored...) in formal semantics The cat chases the mouse \Rightarrow mouse₁ The hacker clicks the mouse button \Rightarrow mouse₂

In word space, each word type has one vector The cat chases the mouse \Rightarrow mouse The hacker clicks the mouse button \Rightarrow mouse

The distributional vector for a word (e.g. $\overrightarrow{\text{mouse}}$) encodes information on *all* occurrences of the word

If a word has several different meanings in a corpus (e.g. mouse), they will all be represented in the same distributional vector

Is this a problem?

The distributional vector for a word (e.g. \overrightarrow{mouse}) encodes information on *all* occurrences of the word

If a word has several different meanings in a corpus (e.g. mouse), they will all be represented in the same distributional vector

Is this a problem?

The distributional vector for a word (e.g. \overrightarrow{mouse}) encodes information on *all* occurrences of the word

If a word has several different meanings in a corpus (e.g. mouse), they will all be represented in the same distributional vector

Is this a problem?

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

Polysemy can be a problem when doing nearest neighbor analysis:

	General (BNC)
	boiling
	distilled
hot	brackish
	drinking
	cold
	franco-prussian
cold	boer
	iran-iraq
	napoleonic

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

Polysemy can be a problem when doing nearest neighbor analysis:

	General (BNC)	
	boiling	
hot	distilled	
	brackish	
	drinking	
	cold	
	hot	
	franco-prussian	
cold	boer	
	iran-iraq	
	napoleonic	

Polysemy Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

Paradigmatic nearest neighbors share syntagmatic relations

Disambiguate the neighbors by sorting the syntagmatic relations

Polysemy Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

Paradigmatic nearest neighbors share syntagmatic relations

Disambiguate the neighbors by sorting the syntagmatic relations

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

Extract a word's k nearest paradigmatic neighbours

- Extract the word's m nearest left and right syntagmatic neighbours (m < k)</p>
- For each of the k nearest paradigmatic neighbours, extract its m nearest left and right syntagmatic neighbours
 - If any of the *m* nearest left or right syntagmatic neighbours are equal to any of the target word's left or right syntagmatic neighbours, use that syntagmatic neighbour as a label for the paradigmatic relation
- Nearest neighbours that have the same syntagmatic label belong to the same paradigm

- Extract a word's k nearest paradigmatic neighbours
- Extract the word's m nearest left and right syntagmatic neighbours (m < k)
- For each of the k nearest paradigmatic neighbours, extract its m nearest left and right syntagmatic neighbours
 - If any of the *m* nearest left or right syntagmatic neighbours are equal to any of the target word's left or right syntagmatic neighbours, use that syntagmatic neighbour as a label for the paradigmatic relation
- Nearest neighbours that have the same syntagmatic label belong to the same paradigm

- Extract a word's k nearest paradigmatic neighbours
- Extract the word's m nearest left and right syntagmatic neighbours (m < k)
- For each of the k nearest paradigmatic neighbours, extract its m nearest left and right syntagmatic neighbours
 - If any of the *m* nearest left or right syntagmatic neighbours are equal to any of the target word's left or right syntagmatic neighbours, use that syntagmatic neighbour as a label for the paradigmatic relation
- Nearest neighbours that have the same syntagmatic label belong to the same paradigm

- Extract a word's k nearest paradigmatic neighbours
- Extract the word's m nearest left and right syntagmatic neighbours (m < k)
- For each of the k nearest paradigmatic neighbours, extract its m nearest left and right syntagmatic neighbours
 - If any of the *m* nearest left or right syntagmatic neighbours are equal to any of the target word's left or right syntagmatic neighbours, use that syntagmatic neighbour as a label for the paradigmatic relation
- Nearest neighbours that have the same syntagmatic label belong to the same paradigm

- Extract a word's k nearest paradigmatic neighbours
- Extract the word's m nearest left and right syntagmatic neighbours (m < k)
- For each of the k nearest paradigmatic neighbours, extract its m nearest left and right syntagmatic neighbours
 - If any of the *m* nearest left or right syntagmatic neighbours are equal to any of the target word's left or right syntagmatic neighbours, use that syntagmatic neighbour as a label for the paradigmatic relation
- Nearest neighbours that have the same syntagmatic label belong to the same paradigm

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

war 0.46	water 0.45	weather 0.20	air 0.18
boer napoleonic	hot soapy warm	warm humid wet	hot warm cool
outbreak laws	drinking boiling		polluted fresh
waging prison-	semer distilled		chilly chill
ers gulf biafran	icy cool bottled		humid
crimean phoney	murky northum-		
falklands punic	brian shallow		
peloponnesian	piped brackish		
undeclared	polluted salty		
vietnam tug	pail tap fresh		
world	tepid choppy		
	muddy bucket		
	treading un-		
	vented scummy		
	drinkable salted		

cold

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

water 0	.69	cold 0.26	air 0.24
semer	drinking	ісу	cold polluted
boiling	distilled		warm fresh pol-
soapy	bottled		lution cool clean
cold	piped		pollute sunlit
northumbrian			
brackish	pail		
tepid	polluted		
shallow	warm		
choppy	iced		
murky	drinkable		
icy fres	h turbid		
salted	muddy		
filtered	cool		
ionized I	ukewarm		

hot

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

Warm				
welcome 0.37	air 0.24	water 0.24	weather 0.18	
outstay warmly	cool hot cold	cool hot cold	cold wet dry	
well overstay	clean fresh	clean fresh pol-	wintry	
	chilly moist	luted icy heat		
	polluted balmy	salty drinking		
	chill suck thin	boiling soapy		
	compressed	shallow murky		
	wintry gulp			

warm

Syntagmatically labelled partitioning (Koptjevskaja-Tamm & Sahlgren, 2012)

lukewarm

response 0.40	water 0.34	coffee 0.34	support 0.18
orienting	drinking tepid	decaffeinated sip	enthusiastic
elicit immune	distilled boiling	ersatz espresso in-	wholehearted
attentional	semer hot soapy	stant sipping tea	
enthusiastic	bottled iced shal-	pour mug decaf-	
eyeblink galvanic	low brackish distil	feinate	
evoked chebyshev	drinkable pour		
exaggerated	choppy piped		
	northumbrian		
	scummy murky		
	pail cold un-		
	vented treading		
	turbid bucket		
	instantaneous		
	foaming polluted		

The principle of compositionality

The meaning of a complex expression is a function of the meanings of its parts and of their syntactic mode of combination

- *a theory of lexical meanings:* assigns meanings to the atomic parts (e.g. words)
- *a theory of syntactic structures:* determines the structure of complex expressions
- *a theory of semantic composition:* determines functions that compose meanings

The principle of compositionality

The meaning of a complex expression is a function of the meanings of its parts and of their syntactic mode of combination

- a theory of lexical meanings: assigns meanings to the atomic parts (e.g. words)
- *a theory of syntactic structures:* determines the structure of complex expressions
- *a theory of semantic composition:* determines functions that compose meanings

The principle of compositionality

The meaning of a complex expression is a function of the meanings of its parts and of their syntactic mode of combination

- a theory of lexical meanings: assigns meanings to the atomic parts (e.g. words)
- *a theory of syntactic structures:* determines the structure of complex expressions
- *a theory of semantic composition:* determines functions that compose meanings

The principle of compositionality

The meaning of a complex expression is a function of the meanings of its parts and of their syntactic mode of combination

- a theory of lexical meanings: assigns meanings to the atomic parts (e.g. words)
- *a theory of syntactic structures:* determines the structure of complex expressions
- *a theory of semantic composition:* determines functions that compose meanings

What are the semantic operations that drive compositionality in word spaces?

- What is the interpretation to be assigned to complex expressions (e.g. phrases, sentences, etc.) in word spaces?
- Output to represent the meaning of words in context?
- How to account for the dependence of compositional meaning on syntactic structure?
- I How to test compositional representations in word spaces?
- O we need do worry about compositionality?

- What are the semantic operations that drive compositionality in word spaces?
- What is the interpretation to be assigned to complex expressions (e.g. phrases, sentences, etc.) in word spaces?
- O How to represent the meaning of words in context?
- How to account for the dependence of compositional meaning on syntactic structure?
- I how to test compositional representations in word spaces?
- O we need do worry about compositionality?

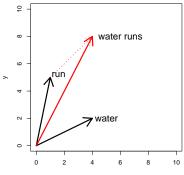
- What are the semantic operations that drive compositionality in word spaces?
- What is the interpretation to be assigned to complex expressions (e.g. phrases, sentences, etc.) in word spaces?
- O How to represent the meaning of words in context?
- On the second term of the dependence of compositional meaning on syntactic structure?
- I how to test compositional representations in word spaces?
- O we need do worry about compositionality?

- What are the semantic operations that drive compositionality in word spaces?
- What is the interpretation to be assigned to complex expressions (e.g. phrases, sentences, etc.) in word spaces?
- **O** How to represent the meaning of words in context?
- How to account for the dependence of compositional meaning on syntactic structure?
- I How to test compositional representations in word spaces?
- O we need do worry about compositionality?

- What are the semantic operations that drive compositionality in word spaces?
- What is the interpretation to be assigned to complex expressions (e.g. phrases, sentences, etc.) in word spaces?
- How to represent the meaning of words in context?
- How to account for the dependence of compositional meaning on syntactic structure?
- **6** How to test compositional representations in word spaces?
- O we need do worry about compositionality?

- What are the semantic operations that drive compositionality in word spaces?
- What is the interpretation to be assigned to complex expressions (e.g. phrases, sentences, etc.) in word spaces?
- How to represent the meaning of words in context?
- How to account for the dependence of compositional meaning on syntactic structure?
- **6** How to test compositional representations in word spaces?
- **O** Do we need do worry about compositionality?

The distributional "meaning" of a phrase as the combined vector built with the vectors of the words in the phrase



Simple vector sum (Landauer & Dumais 1997)

•
$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b}$$

• $\overrightarrow{chase \ cat} = \overrightarrow{chase} + \overrightarrow{cat}$

Simple vector sum (Landauer & Dumais 1997)

•
$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b}$$

• $\overrightarrow{chase \ cat} = \overrightarrow{chase} + \overrightarrow{cat}$

Simple vector sum (Landauer & Dumais 1997)

•
$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b}$$

• $\overrightarrow{chase \ cat} = \overrightarrow{chase} + \overrightarrow{cat}$

Context-sensitive vector sum (Kintsch 2001)

Context-sensitive vector sum (Kintsch 2001)

•
$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b} + \sum \overrightarrow{k}$$

where k are the k nearest neighbors of the predicate which are also neighbors of the argument • $\overrightarrow{chase cat} = \overrightarrow{chase} + \overrightarrow{cat} + (\overrightarrow{hunt} + \overrightarrow{prey} + ... + \overrightarrow{capture})$

Context-sensitive vector sum (Kintsch 2001)

•
$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b} + \sum \overrightarrow{k}$$

where k are the k nearest neighbors of the predicate which are also neighbors of the argument

• $\overrightarrow{chase cat} = \overrightarrow{chase} + \overrightarrow{cat} + (\overrightarrow{hunt} + \overrightarrow{prey} + \ldots + \overrightarrow{capture})$

Context-sensitive vector sum (Kintsch 2001)

Pairwise multiplication (Mitchell & Lapata 2010)

•
$$\overrightarrow{p} = \overrightarrow{a} \cdot \overrightarrow{b}$$

• $\overrightarrow{chase \ cat} = \overrightarrow{chase} \cdot \overrightarrow{cat}$

Pairwise multiplication (Mitchell & Lapata 2010)

•
$$\overrightarrow{p} = \overrightarrow{a} \cdot \overrightarrow{b}$$

• $\overrightarrow{chase \ cat} = \overrightarrow{chase} \cdot \overrightarrow{cat}$

Pairwise multiplication (Mitchell & Lapata 2010)

•
$$\overrightarrow{p} = \overrightarrow{a} \cdot \overrightarrow{b}$$

• $\overrightarrow{chase \ cat} = \overrightarrow{chase} \cdot \overrightarrow{cat}$

Additive composition preserves all the dimensions of the component vectors $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$

mouse	25	10	17
click			20
	55	10	37

Additive composition preserves all the dimensions of the component vectors $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$

	hacker	cheese	button
mouse	25	10	17
click	30	0	20
click mouse	55	10	37

Multiplicative composition selects only the dimensions shared by the component vectors

mouse	25	10	17
click			20
	1650		340

Multiplicative composition selects only the dimensions shared by the component vectors

	hacker	cheese	button
mouse	25	10	17
click	30	0	20
click mouse	1650	0	340

Other (more or less computationally demanding) approaches

- Tensor product
- Circular convolution

Other (more or less computationally demanding) approaches

• Tensor product

• Circular convolution

Other (more or less computationally demanding) approaches

- Tensor product
- Circular convolution

Applications

- Paraphrases
- Analogies
- IR

Applications

• Paraphrases

- Analogies
- IR

Applications

- Paraphrases
- Analogies
- IR

Applications

- Paraphrases
- Analogies
- IR

Applications

- Paraphrases
- Analogies
- IR

Semantic Relations

Research goal

To extend the ability of current word space models to discriminate among different types of semantic relations (e.g. coordinate, hypernyms, synonyms, antonyms, etc.)

Semantic Relations

Research goal

To extend the ability of current word space models to discriminate among different types of semantic relations (e.g. coordinate, hypernyms, synonyms, antonyms, etc.)

Semantic Relations

Research goal

To extend the ability of current word space models to discriminate among different types of semantic relations (e.g. coordinate, hypernyms, synonyms, antonyms, etc.)

A taxonomy is a sequence of progressively broader categories, related by the inclusion relation (ISA, *hypernymy*)

golden retriever \subset dog \subset animal \subset living thing \subset physical entity...

A taxonomy is a sequence of progressively broader categories, related by the inclusion relation (ISA, *hypernymy*)

golden retriever \subset dog \subset animal \subset living thing \subset physical entity...

A taxonomy is a sequence of progressively broader categories, related by the inclusion relation (ISA, *hypernymy*)

golden retriever \subset dog \subset animal \subset living thing \subset physical entity...

A taxonomy is a sequence of progressively broader categories, related by the inclusion relation (ISA, *hypernymy*)

golden retriever \subset dog \subset animal \subset living thing \subset physical entity \ldots

The levels of a taxonomy represent different granularities on which an entity can be categorized (they are paradigmatically related)

A golden retriever, or a dog, or an animal, or a living thing, or a physical entity...

Semantic networks (e.g. WordNet) are organized around taxonomical relations

The levels of a taxonomy represent different granularities on which an entity can be categorized *(they are paradigmatically related)*

A golden retriever, or a dog, or an animal, or a living thing, or a physical entity...

Semantic networks (e.g. WordNet) are organized around taxonomical relations

The levels of a taxonomy represent different granularities on which an entity can be categorized (they are paradigmatically related)

A golden retriever, or a dog, or an animal, or a living thing, or a physical entity...

Semantic networks (e.g. WordNet) are organized around taxonomical relations

Semantic Relations

Hypernymy is an asymmetric relation

- X is a dog \Rightarrow X is an animal
- X is an animal \Rightarrow X is a dog

Standard distributional similarity measures are symmetric

- X is a dog \Rightarrow X is an animal
- X is an animal \Rightarrow X is a dog

Standard distributional similarity measures are symmetric

- X is a dog \Rightarrow X is an animal
- X is an animal \Rightarrow X is a dog

Standard distributional similarity measures are symmetric

- X is a dog \Rightarrow X is an animal
- X is an animal \Rightarrow X is a dog

Standard distributional similarity measures are symmetric

- X is a dog \Rightarrow X is an animal
- X is an animal \Rightarrow X is a dog

Standard distributional similarity measures are symmetric

•
$$cosine(x, y) = cosine(y, x)$$

Hypernyms are semantically broader than their hyponyms

Extensionally broader: animal refers to a broader set of entities than dog Intensionally broader: dog has more specific properties (e.g. barking) than animal Hypernyms are semantically broader than their hyponyms

Extensionally broader: animal refers to a broader set of entities than dog

Intensionally broader: dog has more specific properties (e.g. barking) than animal Hypernyms are semantically broader than their hyponyms

Extensionally broader: animal refers to a broader set of entities than dog Intensionally broader: dog has more specific properties (e.g. barking) than animal

Semantic Relations

Distributional inclusion hypothesis

if u is a semantically narrower term than v, then a significant number of salient distributional features of u is included in the feature vector of v as well, but not the other way around

Use directional similarity measures that are asymmetric

Distributional inclusion hypothesis

if u is a semantically narrower term than v, then a significant number of salient distributional features of u is included in the feature vector of v as well, but not the other way around

Use directional similarity measures that are asymmetric

Distributional inclusion hypothesis

if u is a semantically narrower term than v, then a significant number of salient distributional features of u is included in the feature vector of v as well, but not the other way around

Use directional similarity measures that are asymmetric

Distributional inclusion hypothesis

if u is a semantically narrower term than v, then a significant number of salient distributional features of u is included in the feature vector of v as well, but not the other way around

Use directional similarity measures that are asymmetric

•
$$cosine(x, y) \neq cosine(y, x)$$

Semantic Relations

• WeedsPrec (Weeds & Weir, 2003; Weeds et al., 2004)

$$WeedsPrec(u,v) = \frac{\sum_{f \in F_u \cap F_v} w_u(f)}{\sum_{f \in F_u} w_u(f)}$$
(1)

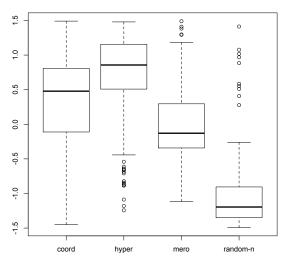
• ClarkeDE (Clarke 2009)

$$ClarkeDE(u, v) = \frac{\sum_{f \in F_u \cap F_v} min(w_u(f), w_v(f))}{\sum_{f \in F_u} w_u(f)}$$
(2)

• *invCL* (Lenci & Benotto 2012)

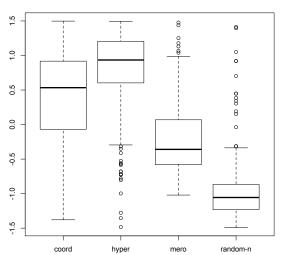
$$invCL(u, v) = \sqrt{ClarkeDE(u, v) * (1 - ClarkeDE(v, u))}$$
 (3)

Directional Similarity Measures on BLESS



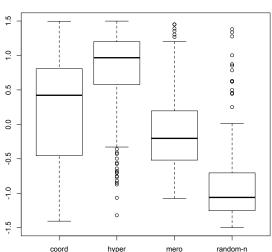
WeedsPrec

Directional Similarity Measures on BLESS



ClarkeDE

Directional Similarity Measures on BLESS



invCL

How can we visualize the similarities?

Nearest neighbor lists

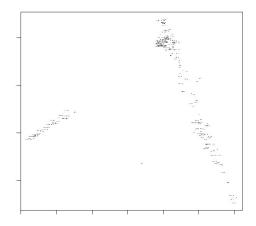
How can we visualize the similarities?

Nearest neighbor lists

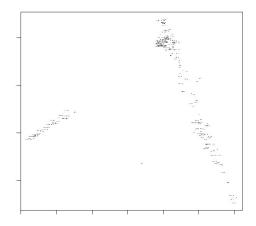
How can we visualize the similarities?

Nearest neighbor lists

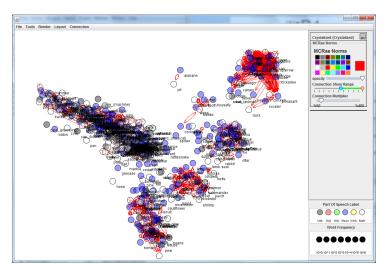
Multidimensional scaling



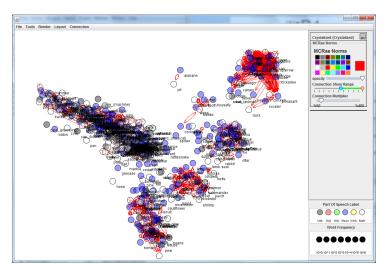
Multidimensional scaling



Word 2 Word



Word 2 Word



Lab

Use Word 2 Word to:

• Experiment with visualization of word spaces

Use Word 2 Word to:

• Experiment with visualization of word spaces

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

• The Distributional Hypothesis

- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda

- The Distributional Hypothesis
- Syntagmatic, paradigmatic and topical similarities
- Co-occurrence matrix and distributional vectors
- Vector similarity and nearest neighbors
- Words-by-regions matrices and LSA
- Words-by-words-matrices and HAL
- Dependency-based models
- Random Indexing and Random Permutations
- (Problems of) evaluation
- (Examples of) tasks
- (The current) research agenda