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(Hinrich Schütze: Word space, 1993)
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An entire sentence as a �at context window
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Context window

[I drink very strong] coffee [at the cafe down ] the street

1 2 3 4 4 3 2 1

A 4+4-sized distance weighted context window



Context window

I drink very strong coffee [at the cafe down the street]
1 0.9 0.8 0.7 0.6 0.5

A 0+6-sized distance weighted context window



Context window

I [drink very strong] coffee [at the cafe] down the street

1 0 3 0 0 1

A 3+3-sized distance weighted context window that ignores stop
words



Distributional vectors

Count how many times each target word occurs in a certain context

Collect (a function of) these frequency counts in vectors

[12,0,234,92,1,0,87,525,0,0,1,2,0,8129,1,0,51,0,235...]

And then what?
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The Meaning of Life
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Vector similarity

Minkowski distance:
(∑n

i=1
|xi − yi |N

) 1
N

City-Block (or Manhattan) distance: N = 1

Euclidean distance: N = 2

Chebyshev distance: N →∞

Scalar product: x · y = x1y1 + x2y2 + ...+ xnyn

Cosine: x ·y
|x ||y | =

∑
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i=1 xiyi√∑
n

i=1 x
2
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n
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Nearest Neighbors

Nearest neighbor search: extracting the k nearest neighbors to a
target word

1 compute the cosine similarity between the context vector of
the target word and the context vectors of all other words in
the word space

2 sort the resulting similarities

3 return only the top-k words
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Nearest neighbor search: extracting the k nearest neighbors to a
target word
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Nearest Neighbors

dog

dog 1.000000
cat 0.774165
horse 0.668386
fox 0.648134
pet 0.626650

rabbit 0.615840
pig 0.570504

animal 0.566003
mongrel 0.560158
sheep 0.551973
pigeon 0.547442
deer 0.534663
rat 0.531442
bird 0.527370

red

red 1.000000
yellow 0.824409
white 0.789056
brown 0.723576
grey 0.720103
blue 0.700047
pink 0.672573
black 0.671302
shiny 0.661379
purple 0.633858
striped 0.619801
dark 0.610804
gleam 0.603501
palea 0.595221



Building a word space: step-by-step
The �linguistic� steps

I drank very strong �Arabica� coffees, at the cafe.

Pre-process a corpus (optional, but recommended)
(e.g. tokenization, downcasing, stemming/lemmatization...)

Linguistic mark-up
(PoS tagging, syntactic parsing, named entity recognition...)

Select (the target words and) the linguistic contexts
(e.g. text region, words...)
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Building a word space: step-by-step
The �mathematical� steps

Count the target-context co-occurrences

Weight the contexts (optional, but recommended)
(e.g. raw co-occurrence frequency, entropy, association

measures...)

Reduce the matrix dimensions (optional)
(dimension reduction method: context selection, variance,

SVD, RI...)

(dimensionality)

Compute vector similarities (do nearest neighbor search)
between distributional vectors
(e.g. cosine, euclidean distance, etc.)
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Building a word space

Tools:

GSDM Guile Sparse Distributed Memory (Guile)

S-Space https://github.com/fozziethebeat/S-Space (Java)

SemanticVectors http://code.google.com/p/semanticvectors/
(Java)

GenSim http://radimrehurek.com/gensim/ (Python)

Word2word http://www.indiana.edu/ semantic/word2word/
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